Personen

Lalith Sharan, M.Sc.

Scientific Staff (Clinic for Cardiac Surgery)
Scientific Staff (AG Artificial Intelligence in Cardiovascular Medicine)
Scientific Staff (Clinic for Cardiology, Angiology and Pneumology)

Focus

AI and AR assisted computational support for mitral valve repair


+49 6221 56-32043

AG Künstliche Intelligenz in der Kardiovaskulären Medizin

Medical/Professional background

since November 2019

Wissenschaftlicher Mitarbeiter, AG Artificial Intelligence in Cardiovascular Medicine, Universitätsklinik Heidelberg, Germany

since November 2019

Scientist, Informatics for Life, Heidelberg, Germany
(www.informatics4life.org)

April 2019 – September 2019

Masterand, Forschungsprojekt "Computer-based Quantification of Reconstructive Mitral Valve Surgery", Hochschule Mannheim und Universitätsklinik Heidelberg, Germany

October 2018 – March 2019

Wissenschaftliche Hilfskraft, Forschungsprojekt "Computer-based Quantification of Reconstructive Mitral Valve Surgery", Hochschule Mannheim und Universitätsklinik Heidelberg, Germany

January 2018 – September 2018

Wissenschaftliche Hilfskraft, Computer Assisted Surgeries (CAS) group, Otto von Guericke Universitaet, Magdeburg, Germany

January 2014 – May 2014

Bachelorand, Forschungsprojekt "Cognitive state assessment using EEG signals", Institute of Nuclear Medicine and Allied Sciences, New Delhi, India

May 2013 – August 2013

Praktikant, Siemens Innovation Think Tank (ITT), Siemens Healthcare Pvt. Ltd. (Now Siemens Healthineers), Goa, India

Scientific background

since November 2019

Ph.D. student, AG Artificial Intelligence in Cardiovascular Medicine, Heidelberg University Hospital, Heidelberg, Germany
Focus: Quantitative endoscopic image analysis for mitral valve surgery

April 2017 – October 2019

Master of Science in Medical Systems Engineering,
Otto von Guericke Universitaet, Magdeburg, Germany
Focus: Computer assisted surgeries, computer vision, deep learning

July 2010 – May 2014

Bachelor of Engineering in Biomedical Engineering,
Manipal Institute of Technology, Karnataka, India
Focus: Medical image & signal processing, Pattern recognition

Publikationen

Preetha, C.J., Wehrtmann, F.S., Sharan, L., Fan, C., Kloss, J., Müller-Stich, B.P., Nickel, F., Engelhardt, S., Towards augmented reality-based suturing in monocular laparoscopic training. Proc. SPIE 11315, Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, 113150X (16 March 2020); (https://doi.org/10.1117/12.2550830)

Engelhardt, S., Sharan, L., Karck, M., De Simone, R., Wolf, I., Cross-Domain Conditional Generative Adversarial Networks for Stereoscopic Hyperrealism in Surgical Training. In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science, vol 11768. Springer, Cham, pp 155-163,  (doi.org/10.1007/978-3-030-32254-0_18)